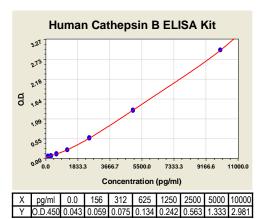


COMPONENTS

Kit Component	Amount
96-well plate precoated with anti-human Cathepsin B antibody	1 Plate
Protein Standard: Lyophilized recombinant human Cathepsin B	2 tubes, 10 ng/tube
Sample Diluent Buffer	30 ml
Biotinylated Antibody (Anti-human Cathepsin B)	130 µl (100x)
Antibody Diluent Buffer	12ml
Avidin-Biotin-Peroxidase Complex (ABC) Solution	130 µl (100x)
ABC Diluent Buffer	12 ml
Tetramethyllbenzidine (TMB) Color Developing Agent	10 ml
TMB Stop Solution	10 ml


Washing Buffer (not provided): TBS or PBS

 $0.\bar{0}$ 1M TBS: Add 1.2g Tris, 8.5g NaCl; 450µl of purified acetic acid or 700µl of concentrated hydrochloric acid to 900ml H $_2$ O and adjust pH to 7.2-7.6. Adjust the total volume to 1L.

0.01M PBS: Add 8.5g sodium chloride, 1.4g Na_2HPO_4 and 0.2g NaH_2PO_4 to 900ml distilled H_2O and adjust pH to 7.2-7.6. Adjust the total volume to 1L.

Storage

Store at 4°C . Cell Applications, Inc. recommends using the kit within 6 months of order.

Figure 1: Cathepsin B Standard Curve. Using the Human Cathepsin B ELISA Kit, O.D. data was graphed against Cathepsin B protein concentration. The TMB reaction was incubated at 37°C for 17 min.

BACKGROUND

Cathepsin B is a papain-family cysteine protease that is normally located in lysosomes, where it is involved in the turnover of proteins and plays various roles in maintaining the normal metabolism of cells. This protease has been implicated in pathological conditions, e.g., tumor progression and arthritis. In disease conditions, increases in the expression of cathepsin B occur at both the gene and protein levels. At the gene level, the altered expression results from gene amplification, elevated transcription, use of alternative promoters and alternative splicing. These molecular changes lead to increased cathepsin B protein levels and in turn redistribution, secretion and increased activity.1 Cathepsin B is synthesized as a preproenzyme and the primary pathways for its normal trafficking to the lysosome utilize mannose 6-phosphate receptors (MPRs). Inactive procathepsin B is processed to active single and double chain forms of cathepsin B in the late endosomes and lysosomes, respectively.2 Tumor cells secrete procathepsin B and both active forms of cathepsin B. Secretion of procathepsin B occurs principally as a result of increased expression, whereas secretion of active cathepsin B seems to involve active processes that can be induced by a variety of mechanisms. Once secreted procathepsin B binds to the tumor cell surface via p11, the light chain of the annexin II heterotetramer. This binding seems to facilitate conversion of procathepsin B to its active forms. Cathepsin B and the annexin II heterotetramer colocalize in caveolae (lipid raft) fractions isolated from tumor cells. Serine proteases and matrix metalloproteinases also have been found to associate with caveolae and some with the annexin II heterotetramer. Thus, it is suggested that pericellular cathepsin B through its proximity to other proteases in caveolae participates in, perhaps even initiates, a proteolytic cascade on the tumor cell surface.3

References

- 1. Sameni, M. et al: Semin. Cancer Biol. 15: 149-157, 2005
- Hanewinkel, H. et al: J. Biol. Chem. 262:12351-6, 1987
 Sloane, B.F. et al: J. Cell. Sci. 107: 373-84, 1994

ELISA OVERVIEW

Cell Applications ELISA Kits are based on standard sandwich enzyme-linked immunosorbent assay technology. Freshly prepared standards, samples, and solutions are recommended for best results.

- 1. Prepare test samples.
- 2. Prepare a protein standard of the target protein.
- 3. Add test samples and standards to the pre-coated 96-well plate. Do not wash
- 4. Add biotinylated detection antibodies. Wash.
- 5. Add Avidin-Biotin-Peroxidase Complex (ABC) Solution. Wash.
- Add Tetramethyllbenzidine (TMB) Color Developing Agent, containing HRP substrate.
- 7. Add TMB Stop Solution
- Subject the plate to analysis.

NOTES:

- Before using the kit, quick spin tubes to bring down all solution to the bottom of tube.
- Duplicate assay wells are recommended for both standard and sample testing.
- Do not let the 96-well plate dry, this will lead to inactivation of plate components.
- When diluting samples and reagents, ensure that they are mixed completely and evenly.
- Pre-warm diluted ABC and TMB solutions at 37°C for 30 min before use to avoid variable temperature effects.
- · For washes, use TBS or PBS. Do not touch well walls.
- A protein standard is included in the kit. A protein standard detection curve should be generated with each experiment, no more than 2 hours prior to the experiment.
- The user will determine sample dilution fold by estimation of target protein amount in samples.

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.

Target Protein Species: Range Specificity

Human
156 pg/ml – 10ng/ml
No detectable cross-reactivity
with other cytokines

PROTOCOL

I. Plate Washing

Discard the solution in the plate without touching the side walls. Blot the plate onto paper towels or other absorbent material. Soak each well with at least 0.3 ml PBS or TBS buffer for 1~2 minutes. Repeat this process two additional times for a total of three washes.

II. Preparation of Test Samples

Test Sample Processing

- Cell culture supernate, tissue lysate or body fluids: Remove particulates by centrifugation.
- Serum: Allow the serum to clot in a serum separator tube (about 2 hours) at room temperature. Centrifuge at approximately 1000 X g for 10 min.
- Plasma: Collect plasma using heparin as an anticoagulant. Centrifuge for 15 min at 1000 x g within 30 min of collection. Analyze immediately or aliquot and store frozen at -20°C.

Sample Dilution Guideline

Estimate the concentration of the target protein in the sample and select a proper dilution factor such that the diluted target protein concentration falls within the standard curve range. Depending on the sample, several trial dilutions may be necessary. Dilute the sample using the provided diluent buffer, mixing well. Suggested working dilutions of samples are as follows:

Target Protein	Sample	Sample	Diluent
Concentration Range	Working Dilution	Vol.	Buffer Vol.
100-1000 ng/ml	1:100	1 µl	99 µl
10-100 ng/ml	1:10	10 µl	90 µl
156-10000 pg/ml	1:2	50 µl	50 µl
≤156 pg/ml	n/a	100µl	n/a

If samples will be assayed within 24 hours, store at 2-8°C. For long-term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.

III. Preparation of Reagents

Reconstitution of the Standard

The standard solutions should be prepared no more than 2 hours prior to the experiment. Two tubes of the standard are included in each kit. Use one tube for each experiment

- 10,000pg/ml of human Cathepsin B standard solution: Add 1 ml sample diluent buffer into one tube, keep the tube at room temperature for 10 min and mix thoroughly.
- 5000pg/ml→156pg/ml of human Cathepsin B standard solutions: Label 6 Eppendorf tubes with 5000pg/ml, 2500pg/ml, 1250pg/ml, 625pg/ml, 312pg/ml, 156pg/ml, respectively. Aliquot 0.3 ml of the sample diluent buffer into each tube. Add 0.3 ml of the above 10, 000pg/ml Cathepsin B standard solution into 1st tube and mix. Transfer 0.3 ml from 1st tube to 2nd tube and mix. Transfer 0.3 ml from 2nd tube to 3rd tube and mix, and so on.

Preparation of Biotinylated Antibody Working Solution

5820 Oberlin Dr. Suite 101, San Diego, CA 92121

The solution should be prepared no more than 2 hours prior to the experiment.

- 1. The total volume should be: 0.1ml/well x (the number of wells). (Allowing 0.1-0.2 ml more than total volume)
- 2. Biotinylated antibody should be diluted in 1:100 with the antibody diluent buffer and mixed thoroughly.

Preparation of the Avidin-Biotin-Peroxidase Complex (ABC) Working Solution

The solution should be prepared no more than 1 hour prior to the experiment.

The total volume should be: 0.1ml/well x (the number of wells). (Allowing

- The total volume should be: 0.1ml/well x (the number of wells). (Allowing 0.1-0.2 ml more than total volume)
- Avidin- Biotin-Peroxidase Complex (ABC) should be diluted in 1:100 with the ABC dilution buffer and mixed thoroughly.

IV. ELISA

The ABC working solution and TMB color developing agent must be kept warm at 37°C for 30 min before use. When diluting samples and reagents, they must be mixed completely and evenly. A standard detection curve should be prepared for each experiment. The user will decide sample dilution fold by crude estimation of target protein amount in samples.

- . Aliquot 0.1ml per well of the 10,000pg/ml, 5000pg/ml, 2500pg/ml, 1250pg/ml, 625pg/ml, 312pg/ml, 156pg/ml human Cathepsin B standard solutions into the precoated 96-well plate. Add 0.1ml of the sample diluent buffer into the control well (Blank well). Add 0.1ml of each properly diluted sample of human sera, plasma, body fluids, tissue lysates or cell culture supernatants to each empty well. See "Sample Dilution Guideline" for details. We recommend that each human Cathepsin B standard solution and each sample is measured in duplicate.
- 2. Seal the plate with the cover and incubate at 37°C for 90 min.
- Remove the cover, discard plate content, and blot the plate onto paper towels or other absorbent material. Do NOT let the wells completely dry at any time.
- 4. Add 0.1ml of biotinylated anti-human Cathepsin B antibody working solution into each well and incubate the plate at 37°C for 60 min.
- Wash the plate three times with 0.01M TBS or 0.01M PBS, and each time let washing buffer stay in the wells for 1 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
- Add 0.1ml of prepared ABC working solution into each well and incubate the plate at 37°C for 30 min.
- 7. Wash plate 5 times with 0.01M TBS or 0.01M PBS, and each time let washing buffer stay in the wells for 1-2 min. Discard the washing buffer and blot the plate onto paper towels or other absorbent material.
- 8. Add 90 µl of prepared TMB color developing agent into each well and incubate plate at 37°C for 15-20 min (shades of blue can be seen in the wells with the four most concentrated human Cathepsin B standard solutions; the other wells show no obvious color).
- Add 0.1ml of prepared TMB stop solution into each well. The color changes into yellow immediately.
- Read the O.D. absorbance at 450nm in a microplate reader within 30 min after adding the stop solution.

V. Calculating Protein Concentration

- For all wells, determine O.D.450(Relative):
 O.D.450(Relative) = O.D.450(Reading) O.D.450(Blank)
- Plot the standard curve:

Plot O.D.450(Relative) of each standard solution (Y) vs. the respective concentration of the standard solution (X). See **Figure 1** for a typical standard curve.

 The target protein concentration in samples can be interpolated from the standard curve. Multiply the interpolated concentration by the dilution factor to obtain the target protein concentration in the sample.

FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC OR CLINICAL USE.

